Computational modeling of depth ordering in occlusion through accretion or deletion of texture.
نویسندگان
چکیده
Understanding the depth ordering of surfaces in the natural world is one of the most fundamental operations of the primate visual system. Surfaces that undergo accretion or deletion (AD) of texture are always perceived to behind an adjacent surface. An updated ForMotionOcclusion model (Barnes & Mingolla, 2013) includes two streams for computing motion signals and boundary signals. The two streams generate depth percepts such that AD signals together with boundary signals generate a farther depth on the occluded side of the boundary. The model fits the classical data (Kaplan, 1969) as well as the observation that moving surfaces tend to appear closer in depth (Royden, Baker, & Allman, 1988), for both binary and grayscale stimuli. The recent "Moonwalk illusion" described by Kromrey, Bart, and Hegdé (2011) upends the classical view that the surface undergoing AD always becomes the background. Here the surface that undergoes AD appears to be in front of the surrounding surface-a result of the random flickering noise in the surround. As an additional challenge, we developed an AD display with dynamic depth ordering. A new texture version of the Michotte rabbit hole phenomenon (Michotte, Thinès, & Crabbé, 1964/1991) generates depth that changes in part of the display area. Because the ForMotionOcclusion model separates the computation of boundaries from the computation of AD signals, it is able to explain the counterintuitive Moonwalk stimulus. We show simulations that explain the workings of the model and how the model explains the Moonwalk and textured Michotte phenomena.
منابع مشابه
Depth perception from dynamic occlusion in motion parallax: roles of expansion-compression versus accretion-deletion.
Motion parallax, or differential retinal image motion from observer movement, provides important information for depth perception. We previously measured the contribution of shear motion parallax to depth, which is only composed of relative motion information. Here, we examine the roles of relative motion and accretion-deletion information in dynamic occlusion motion parallax. Observers perform...
متن کاملGeometric figure-ground cues override standard depth from accretion-deletion.
Accretion-deletion is widely considered a decisive cue to surface depth ordering, with the accreting or deleting surface interpreted as behind an adjoining surface. However, Froyen, Feldman, and Singh (2013) have shown that when accretion-deletion occurs on both sides of a contour, accreting-deleting regions can also be perceived as in front and as self-occluding due to rotation in three dimens...
متن کاملBoundary segmentation from dynamic occlusion-based motion parallax.
Active observer movement results in retinal image motion that is highly dependent on the scene layout. This retinal motion, often called motion parallax, can yield significant information about the boundaries between objects and their relative depth differences. Previously we examined segmentation from shear-based motion parallax, which consists of only relative motion information. Here, we exa...
متن کاملFast Intra Mode Decision for Depth Map coding in 3D-HEVC Standard
three dimensional- high efficiency video coding (3D-HEVC) is the expanded version of the latest video compression standard, namely high efficiency video coding (HEVC), which is used to compress 3D videos. 3D videos include texture video and depth map. Since the statistical characteristics of depth maps are different from those of texture videos, new tools have been added to the HEVC standard fo...
متن کاملLoss of sensitivity to dynamic occlusion in patients with Alzheimer's disease.
The current study examined whether diminished sensitivity to dynamic occlusion in Alzheimer's disease (AD) contributes to reduced capacity to recover 3D shape from motion. Young controls, age-matched elderly controls, and AD patients participated in the study. Participants watched computer simulations of an object, depicted as either transparent or opaque, rotating about the vertical axis again...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vision
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2015